DE BRUYN Arnaud, OTTER Thomas
Firms use aggregate data from data brokers (e.g., Acxiom, Experian) and external data sources (e.g., Census) to infer the likely characteristics of consumers in a target list and thus better predict consumers’ profiles and needs unobtrusively. We demonstrate that the simple count method most commonly used in this effort relies implicitly on an assumption of conditional independence that fails to hold in many settings of managerial interest. We develop a Bayesian profiling method introducing different conditional independence assumptions. We also show how to introduce additional observed covariates into this model. We use simulations to show that in managerially relevant settings, the Bayesian method will outperform the simple count method, often by an order of magnitude. We then compare different conditional independence assumptions in two case studies. The first example estimates customers’ age based on their first names; prediction errors decrease substantially. In the second example, we infer the income, occupation, and education of online visitors of a marketing analytic software company based exclusively on their IP addresses. The face validity of the predictions improves dramatically and reveals an interesting (and more complex) endogenous list-selection mechanism than the one suggested by the simple count method.
DE BRUYN, A. et OTTER, T. (2022). Bayesian Consumer Profiling: How to Estimate Consumer Characteristics from Aggregate Data. Journal of Marketing Research, 59(4), pp. 755-774.