Essec\Faculty\Model\Contribution {#2216
#_index: "academ_contributions"
#_id: "13299"
#_source: array:26 [
"id" => "13299"
"slug" => "anonymisation-de-donnees-par-generalisation-methode-avec-guidage"
"yearMonth" => "2018-01"
"year" => "2018"
"title" => "Anonymisation de données par généralisation - méthode avec guidage"
"description" => "BEN FREDJ , F., LAMMARI, N. et WATTIAU, I. (2018). Anonymisation de données par généralisation - méthode avec guidage. <i>Ingenierie des Systemes D’Information</i>, 23(1), pp. 63-87."
"authors" => array:3 [
0 => array:3 [
"name" => "WATTIAU Isabelle"
"bid" => "B00000530"
"slug" => "wattiau-isabelle"
]
1 => array:1 [
"name" => "BEN FREDJ Feten"
]
2 => array:1 [
"name" => "LAMMARI Nadira"
]
]
"ouvrage" => ""
"keywords" => array:7 [
0 => "guidance"
1 => "security"
2 => "ontology"
3 => "methodology"
4 => "privacy"
5 => "anonymization"
6 => "model-driven approach"
]
"updatedAt" => "2024-10-31 13:51:19"
"publicationUrl" => "https://doi.org/10.3166/ISI.23.1.63-87"
"publicationInfo" => array:3 [
"pages" => "63-87"
"volume" => "23"
"number" => "1"
]
"type" => array:2 [
"fr" => "Articles"
"en" => "Journal articles"
]
"support_type" => array:2 [
"fr" => "Revue scientifique"
"en" => "Scientific journal"
]
"countries" => array:2 [
"fr" => null
"en" => null
]
"abstract" => array:2 [
"fr" => "Many algorithms allow data owners to anonymize personal data, aiming at avoiding disclosure risk without losing data utility. In this paper, we describe a model-driven approach guiding the data owner during the anonymization process. The guidance, informative or suggestive, helps the data owner not only in choosing the most relevant algorithm but also in defining the best input values for the algorithm, given the characteristics of data and the context. In this paper, we focus on generalization algorithms for micro-data. We conducted a reverse engineering process in order to extract some knowledge from existing anonymization tools. The knowledge about anonymization, both theoretical and experimental, is managed thanks to an ontology."
"en" => "Many algorithms allow data owners to anonymize personal data, aiming at avoiding disclosure risk without losing data utility. In this paper, we describe a model-driven approach guiding the data owner during the anonymization process. The guidance, informative or suggestive, helps the data owner not only in choosing the most relevant algorithm but also in defining the best input values for the algorithm, given the characteristics of data and the context. In this paper, we focus on generalization algorithms for micro-data. We conducted a reverse engineering process in order to extract some knowledge from existing anonymization tools. The knowledge about anonymization, both theoretical and experimental, is managed thanks to an ontology."
]
"authors_fields" => array:2 [
"fr" => "Systèmes d'Information, Data Analytics et Opérations"
"en" => "Information Systems, Data Analytics and Operations"
]
"indexedAt" => "2024-11-21T11:21:49.000Z"
"docTitle" => "Anonymisation de données par généralisation - méthode avec guidage"
"docSurtitle" => "Journal articles"
"authorNames" => "<a href="/cv/wattiau-isabelle">WATTIAU Isabelle</a>, BEN FREDJ Feten, LAMMARI Nadira"
"docDescription" => "<span class="document-property-authors">WATTIAU Isabelle, BEN FREDJ Feten, LAMMARI Nadira</span><br><span class="document-property-authors_fields">Information Systems, Data Analytics and Operations</span> | <span class="document-property-year">2018</span>"
"keywordList" => "<a href="#">guidance</a>, <a href="#">security</a>, <a href="#">ontology</a>, <a href="#">methodology</a>, <a href="#">privacy</a>, <a href="#">anonymization</a>, <a href="#">model-driven approach</a>"
"docPreview" => "<b>Anonymisation de données par généralisation - méthode avec guidage</b><br><span>2018-01 | Journal articles </span>"
"docType" => "research"
"publicationLink" => "<a href="https://doi.org/10.3166/ISI.23.1.63-87" target="_blank">Anonymisation de données par généralisation - méthode avec guidage</a>"
]
+lang: "en"
+"_type": "_doc"
+"_score": 8.953466
+"parent": null
}