Année
2023
Auteurs
LJUBIC Ivana, CERULLI Martina, SERRA Domenico, SORGENTE Carmine, ARCHETTI Claudia
Abstract
In social network analysis, the size of the k-core, i.e., the maximal induced subgraph of the network with minimum degree at least k, is frequently adopted as a typical metric to evaluate the cohesiveness of a community. We address the Collapsed k-Core Problem, which seeks to find a subset of k users, namely the most critical users of the network, the removal of which results in the smallest possible k-core. For the first time, both the problem of finding the k-core of a network and the Collapsed k-Core Problem are formulated using mathematical programming. On the one hand, we model the Collapsed k-Core Problem as a natural deletion-round-indexed Integer Linear formulation. On the other hand, we provide two bilevel programs for the problem, which differ in the way in which the k-core identification problem is formulated at the lower level. The first bilevel formulation is reformulated as a single-level sparse model, exploiting a Benders-like decomposition approach. To derive the second bilevel model, we provide a linear formulation for finding the k-core and use it to state the lower-level problem. We then dualize the lower level and obtain a compact Mixed-Integer Nonlinear single-level problem reformulation. We additionally derive a combinatorial lower bound on the value of the optimal solution and describe some pre-processing procedures, and valid inequalities for the three formulations. The performance of the proposed formulations is compared on a set of benchmarking instances with the existing state-of-the-art solver for mixed-integer bilevel problems proposed in (Fischetti, Ljubić, Monaci, and Sinnl, 2017).
CERULLI, M., SERRA, D., SORGENTE, C., ARCHETTI, C. et LJUBIC, I. (2023). Mathematical programming formulations for the collapsed k-core problem. European Journal of Operational Research, 311(1), pp. 56-72.